Embedded constant-curvature curves on convex surfaces
نویسندگان
چکیده
منابع مشابه
Surfaces of Constant Mean Curvature Bounded by Convex Curves
This paper proves that an embedded compact surface in the Euclidean space with constant mean curvature H 6= 0 bounded by a circle of radius 1 and included in a slab of width 1=jHj is a spherical cap. Also, we give partial answers to the problem when a surface with constant mean curvature and planar boundary lies in one of the halfspaces determined by the plane containing the boundary, exactly, ...
متن کاملPoleni Curves on Surfaces of Constant Curvature
In the euclidean plane, a regular curve can be defined through its intrinsic equation which relates its curvature k to the arc length s. Elastic plane curves were determined this way. If k(s) = 2α cosh(αs) , the curve is known by the name “la courbe des forçats”, introduced in 1729 by Giovanni Poleni in relation with the tractrix [9]. The above equation is yet meaningful on a surface if one int...
متن کاملProperly embedded surfaces with constant mean curvature
In this paper we prove a maximum principle at infinity for properly embedded surfaces with constant mean curvature H > 0 in the 3-dimensional Euclidean space. We show that no one of these surfaces can lie in the mean convex side of another properly embedded H surface. We also prove that, under natural assumptions, if the surface lies in the slab |x3| < 1/2H and is symmetric with respect to the ...
متن کاملThe Moduli Space of Complete Embedded Constant Mean Curvature Surfaces
We examine the space of surfaces in R which are complete, properly embedded and have nonzero constant mean curvature. These surfaces are noncompact provided we exclude the case of the round sphere. We prove that the space Mk of all such surfaces with k ends (where surfaces are identified if they differ by an isometry of R) is locally a real analytic variety. When the linearization of the quasil...
متن کاملThe rigidity of embedded constant mean curvature surfaces
We study the rigidity of complete, embedded constant mean curvature surfaces in R 3 . Among other things, we prove that when such a surface has finite genus, then intrinsic isometries of the surface extend to isometries of R 3 or its isometry group contains an index two subgroup of isometries that extend. Mathematics Subject Classification: Primary 53A10, Secondary 49Q05, 53C42
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics
سال: 2011
ISSN: 0030-8730,0030-8730
DOI: 10.2140/pjm.2011.253.213